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Abstract: The Viennese theatre ‘Etablissement Ronacher’ wasded in 1871 and is one of

the oldest theatres in Vienna. Since 1987 thedistgilding is integrated in the ‘Vereinigte

Biuhnen Wien’ cooperation and serves for the presiemt of musicals. Increasing numbers of
spectators and the necessity for modernisationhef ibfrastructure require a complete
rehabilitation which started in 2006 and is finidhe spring 2008. The stability control of the
theatre demands a permanent geodetic monitoringtHer whole construction process.
Especially the theatre ceiling is affected by digant mechanical and thermal loads.

The first part of the paper contains a short dpton of construction process, permanent
monitoring system for the ceiling (based on tachetmmeasurements) and the principal
strategy for automated alerting via e-mail or SMS.

The second part of the paper deals with the inyattin of the displacements in selected
material points. A special focus is set on the ¢jtiaation of thermal effects caused by

changes of the temperature gradient between rosé tind auditorium. It is shown that ‘black
box’ models (e.g. Artificial Neural Networks, Fuziethods etc.) as well as ‘grey box’

models (e.g. analogous spring-damp-systems idedtllly Kalman-filtering) are suitable to

quantify and predict the deformation behaviour. &dhages and disadvantages of the
different applications are discussed.

1. MONITORING THE ‘RONACHER’ THEATRE

As a result of new safety aspects in connectioh wie development of early warning and

alarm systems, geomonitoring has a gaining siganfte. The basic concept is to collect re-
peated £t = days to years) or ‘continuousdt(= msec to hours) measuring data from the ob-
served objects (e.g. natural objects like regiaral local earth crust, geological and geo-
technical structures and artificial objects likem#a buildings, machineries during their con-

struction and / or operating phase). Mostly, gecdktgeotechnical and geophysical mea-
suring methods are used and implemented in anrategjonline warning / alarm concept.

For the years 2006-2008, our institute was authdrts install a geodetic monitoring system
in the Viennese theatre ‘Etablissement Ronacheg [@gure 1). One of the main tasks was to
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monitor the whole construction process, especitily vertical mechanical and thermal
deformations of the 600 sqm theatre ceiling (seélirn et al., 2007).

Figure 1 - Etablissement Ronacher and study oteaetre ceiling.

Four selected object points ;jQvere continously monitored with a measuring rafteft =
10 min, six additional reference points (FRith a rate of4t = 60 min. The monitoring
system and the measuring design are shown in Fyure

The system contains an automated alarm functiorefbhail or SMS) if predefined tolerances
T, =25 mm in construction phase | (reallocation of¢b#ding) andT, =+12 mm in phase II
(roof finishing) are exceeded, is the maximum tolerable vertical deformation loé ceiling
related to a balanced condition at the beginninthefconstruction process, is related to a
balanced state at the end of phase | (Eichhorh, &097).

Reference and
|

TCA1800

System
architecture

Figure 2 - Monitoring system and measuring design.
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2. THERMAL DEFORMATIONS OF THE THEATRE CEILING

Apart from the dominant mechanical deformations, sensitive and reliable alarm function
has also to consider the influence of temporalat@ms of the vertical temperature gradient
between roof truss and auditorium (see Figure ajuidlly, the thermal influence is not a risk
for the stability of the building. Neverthelessetimal stress may cause cracks in plaster and
stucco and requires periodical reparation. In tespect, the investigation is considered as
part of the full deformation analysis. Two temparatsensors are logging the air tempe-
ratures in the roof trus3@) and the auditoriumT({1) with a measuring rat¢t = 10 min.

Temp. logger Il

Vertical profile ceiling To (roof truss) e
/Tu@umum) |£ v T
G Objectpoint ~ TTTee--o ‘
>

Temp. logger |

Figure 3 - Monitoring of thermal deformations.

3. NON-PARAMETRIC DEFORMATION MODELLING (‘BLACK BOX’)

The main problem for deformation modelling is thatrly nothing is known about the inner
structure of the old ceiling. It is inhomogenousl anaybe consists of a mixture of cement,
wood and straw. So first of all it is decided tce uson-parametric dynamic deformation
models (e.g. ‘black box’, see Welsch et al., 2G00}the investigation of the causal chain:

change of vertical temperature gradient => charigeedical displacements.

The following methods are presented for object p@it and can be classified as SISO (=
Single Input Single Output, e.g. Unbehauen, 1988jiets with the temporal progress of the
temperature gradierTy as input (dynamic load) and the vertical displaeetsdz as output.
The basic principle is shown in Figure 4.

Memory
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Figure 4 - Creation of SISO deformation models.
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3.1. Neuro-Fuzzy approach

Fuzzy systems are an approach to handle and prde¢gssaccording to the human way of

thinking. With fuzzy systems, input and output ahies are defined by so-called ‘member-
ship functions’. E.g. the variable ‘temperaturehdae described by the linguistic member-

ship functions ‘low’, ‘medium’ and ‘high’. The casponding values are in most cases
overlapping intervals to consider the inherent finegs of the transition of e.g. ‘low tempe-

rature’ to ‘medium temperature’. The human expedwledge of the application’s processes
must be modelled by IF-THEN-rules and stored imla base, which represents the connec-
tion between input and output. In some complexiagpbns, it is not possible to model the

behaviour of a system by rules, defined by a huexguert.

ANN (= Artificial Neural Networks, see also SectiBr2) are usually used to model a system
without having knowledge of the underlying procasse big disadvantage of this method is
that ANN are ‘black box’ systems, i.e. the systean not be analysed or interpreted.

So a combination of fuzzy systems and ANN seemseta useful approach to benefit from
the advantages of both strategies, disregardingelieral disadvantages. These neuro-fuzzy
methods are based on the following approach: Withenspecification of the input and output
variables, the membership functions for both grduge to be defined. In most systems it is
possible to predefine an initial state for the mership functions, but it is also possible to
start from scratch. Within the training phase,nirag data is used to define and optimise the
membership functions and the rule base, usingetming component of ANN. After a chec-
king phase, the resulting fuzzy system can be @sedrediction or control. Detailed infor-
mation on neuro-fuzzy systems can be found e.gamgy(1993) and Borgelt et al. (2003).

The data investigated consists of temperature asdign measurements of 9 days in July
2006 for the object point O1. In Figure 5 the ar@imeasuring data of the height component
(Z coordinate) of O1 is shown in blue. Apart from exipdical structure, the signal is also

overlaid by a non-stationary part.

Goal of the neuro-fuzzy application is the predictof the temperature-induced movement of
the object point O1, so the output variable isZtmordinate of O1. Two input variables are
used for modelling:

AT = To-Tu: difference between the measured temperaturéseatoof truss To)
and at the auditoriumr()
- AT with a time delay of 6 hours

It is evident that thermal deformations are notyadépendent on the actual temperature but
also on the temperature some time ago. The tinay/d#l6 hours was empirically found to be
able to represent the form and amplitude of dd&igrmal variations. Other time delays tested
here (e.g. the delay of 4.7 hours found by croseetaiion or another delay of 12 hours) gave
almost equal or worse results.

For calculation the Matldb Fuzzy toolbox was used. For both input variablésee
membership functions of type ‘Gaussian bell functwere defined. The parameters and the
shape of these membership functions were optimisethg the training phase. Here, an
hybrid training algorithm combining least-squarestimd and a backpropagation gradient
descent method was used for the 950 pairs of mpdioutput training data.
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Within the checking phase, the remaining data wasgssed to get an idea of the quality of
the prediction capabilities of the resulting systémFigure 5 the measured output is shown in
blue and the calculated output is shown in redh liot the training phase (left part) and the
checking resp. prediction phase (right part). Towelr figure shows the differences between
the measured and the calculatgdsalues; the maximum difference within the predicti
phase is 0.28 mm. It is obvious that there is @nger increase of th&é coordinate at the tran-
sition between training and prediction phase. Bitigation could not fully be reproduced by
the neuro-fuzzy system so that there is a remairatiger constant offset of about 0.15 mm.
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Figure 5 - Upper figure: measurements (blue) ardiptions (red). Training and prediction
phase are separated by a vertical line at epochL@uger figure: residuals between the
measurements and the calculated output.

3.2. Artificial Neural Network

ANN are using a different approach of problem swjvin comparison with conventional
computer software — they process information innailar way the human brain does. The
basis of an ANN consists of a set of highly intencected processing elements, the so-called
‘neurons’. The disadvantage of such an approathaisthe network finds out how to solve
the problem by itself, therefore the user receivesleclaration how the problem was solved.
Furthermore neural networks operations can be ditiable.
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An ANN can be seen as a simple clustering of aréfineurons. Each network is subdivided
into single layers, which are then connected aneaah other. Basically, all artificial neural
networks have a similar structure and consist oédahtypes of layers: (1) input layer
represents the first interface to the real world fgceive the inputs); (2) output layer
represents the second interface to the real wtwlgrpvide the network’s outputs); (3) hidden
layer represents the rest of the network (to ti@nsfthe information from the input layer to
the output layer).

The single artificial neurons are connected (nolynahidirectional) via a network of paths.
Each neuron receives inputs from many other neutmrtsproduces a single output, which is
communicated to other neurons. There exist diffetgmes of connections between neurons
(fully connected, partially connected and othersye-use a ‘fully connected feed forward
network’, by which each neuron on the first laygconnected to every neuron on the second
layer. The neurons on the first layer send theipatuto the neurons on the second layer, but
they do not receive any input back form the neurmmshe second layer. More detail about
artificial neural networks and their applicatiomdae found in Zell (1994) and Bishop (1995).

For our application the number of input and outpuits is fixed by the number of
correspondent parameters — for our example 2 inpit$ for the temperature loggéro(and
Tu) and 1 output unit for the coordinaZgeach coordinatX, Y andZ will be modeled by a
separated neural network — in the following we vioikus our report o). The input layer
was extended to an input array of1® units to simulate a memory;(Z.1, Z-2, ...). The
number of hidden-units is directly related to thepabilities of the network. For the best
network performance an optimal number of hidderisumust be properly determined — we
have chosen a hidden layer o010 units.

The processed data consists again of temperatdrpaaition measurements of 11 days (1589
epochs) in July 2006. The data has been dividedtwd parts: a training data set (start at day
49) and one for testing (start at day 54). Bothehla@en pre-processed in such a way that they
are limited to an interval of 0-1 (normalization).

The network was trained by means of the ‘backprapag algorithm’ and by means of 800
epochs of trainings samples — each sample corgigiin2x10 input samples and the
appropriate output sample. To ensure optimal resard to avoid an overtraining we have
used several criteria for controlling the trainprcess. First of all the threshold for the Sum
Squared Error (SSE) of the learning function waedito a value of 0.01Secondly, the
maximum training cycles were set to 1000. Afterihgurained the ANN, the second part of
the data set (789 epochs) was used for testing retult is shown in Figure 6. The maximum
difference between predicted and measiresl0.27mm.
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Figure 6 - Neural network in prediction mode: meaments (blue) and predictions (magenta).

4. 'PARAMETRIC’ MODELLING (‘GREY BOX’)

4.1. ‘Parametric’ model and adaptive Kalman-filtering for identification

For an improved modelling also of the non-statigntrermal effects in the deformation
signal in object point O1, the ceiling is assumedhow a visco-elastic behaviour in a certain
operational range around a state of equilibriumti{a following, thermal induced deviations
from the balanced state are quantified wiif). In this case the thermal deformation model
can be prepared with a ‘spring-damp system’ as amichl analogous model (Kelvin
material, e.g. Pelzer, 1977 and Heunecke, 1995¢oring to Welsch et al. (2000) such a
model can be classified as a ‘grey box’ model, theans it is situated somewhere between
non-parametric and real parametric models.

The configuration of the spring-damp system is snawrFigure 7, withythe spring constant
andthe damping. The system is ‘activated’ by theigattemperature gradiealy = Tok —
Tuk (see also Figures 3 and 4).

Temperature

gradient
AT

Figure 7 - Principle of the mechanical analogousl@ehtspring-damp-system’.

Object point
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The adaptation of the spring-damp model to redifyart of the experimental system analysis
(system identification, see Isermann, 1988) andatos the determination of the initial values
and the physical parametersand 5. The identification is realised with an adaptivalidan-
filter (e.g. Eichhorn, 2005). The basic filter etjaas are shown in (1) and (2).

_Mﬁ[ 1 _Mm
Azkﬂ = e (Bc+Wp k) A‘zk + S (1 -e (Bi+Wo px) ) ATk
(yk + Wp,y,k)
1 —Mm
(B Wy 5.k)
— (1 -e PO Wy
(Vi + Wy i) (1)
Vin = Vi + W,
Pen = A " Wo,5.k
I‘Az,k+1 = Azkﬂ (2)

In the system equations (1) the state vector costai = (4dz, K, A). The quantitywr
represents a stochastic disturbance influence, hmpiantifies the deficiency of the model.
The physical parameters are integrated into twooanwalk processes, wherety ,« and
Wy 5Kk are the stochastic disturbances. The state quafitit; is directly observed, which
leads to the simple measuring equation (2).

The filter strategy is defined according to Eichih(@005) for dynamic deformation processes
with high sampling rates. This means e.g. the dseduced random walks to guarantee a
stable progress and convergence of the estimatguits.

4 .2. First Filter results for O1

The following investigations are divided into twhagses: training and pure prediction phases.
The training phase contains the model identificatidhe pure prediction phase is the
calculation of the model outputdf) using only the identified deformation model are t
measured temperature gradiedi) as input. Like in Section 3 the comparison calted
output versus measured output is again a goodatatiéor the model quality.
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Figure 8 - Identification results for spring @nd damping parametes)(

Because of summer time and no significant constmictctivities, the period July"®— July,
11" 2006 (see also Section 3) shows a clear thernfairdation signal which is not overlaid
by any changes of mechanical deformations andesteel as training period. Figure 8 shows
the identification results with a filter progress4i = 10 min. Starting from totally arbitrary
initial values {6 = % = 1), the estimation of the spring constgbnverges tgy= 3.55°C/mm
(with g,= 0.2°C/mm) and the damping f®= 1681°C min/mm (withgz= 50°C min/mm).
The relative errors of 5% and 3% show a homogeramesiracy level. Nevertheless the
damping is more difficult to determine becauseogidr correlations with the observatidng
(Eichhorn, 2005). This results in a nearly twicdaagy identification time.
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Figure 9 - Training and prediction phase of therdeibrmationsdzin O1.

The filtered deformation signalz is shown in Figure 9. The pure prediction phasehes
fromt = 1370 h to 1435 h. Within the 65 hours (2.7 dalge)predicted deformation (red line)
follows well the measured deformation (blue linEfe residuals are in a maximum range of
ca.x 0.15 mm. Their.m.s:value is 0.06 mm. Because of remaining small syate errors,



13th FIG Symposium on Deformation Measurement and Analysis
4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering

1| ‘meas\)"‘“%
\(\a(\%es

e ¢
LNEC, LISBON 2008 May 12-15

the distribution shows a certain skew symmetricavedur. In total, it can be stated that the
identified model describes well the main charastes of the thermal deformation process.

5. CONCLUSIONS AND OUTLOOK

The comparison of the ‘black box’ (Neuro Fuzzy ahNN) with the ‘grey box’ model
(spring- damp-system) clearly shows that the ‘grey’ approach obtains the best prediction
results when the thermal deformation signal is lawerby non-stationary parts. The results
are summarized in Table 1.

Neuro Fuzzy ANN Spring-Damp

r.m.s.[mm]

0.15

0.17

0.06

Characteristics

No phase shift
Offset

Phase shift
Scale factor

No phase shift
Small offset

Table 1 - Residuals of deformation prediction.

Because of the deviations between all three moaledsthe real physical behaviour of the
ceiling, also the validity of the spring-damp-systeemains restricted to a narrow range
(approximately up to 1cm) around the balanced statdquly 2006. Another working point
requires a re-calibration. To extend the validitsnadification of the model will be required.
In this case maybe a dynamic Finite Element reptasen could improve the results. But
taking into account the ‘poor’ discretisation oétbeiling with only four object points and the
unknown inner structure, this approach will havéy@low chance to succeed.

Consequently, further investigations will prelimiity be focussed on a further development
of Neuro Fuzzy approaches and the ANN.
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