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Abstract: Geodetic deformation monitoring networks has to dudficient in terms of
precision, reliability and strength, sensitivity dawost. Hence, before monumenting and
gathering survey data, a geodetic network mustdsggdated to meet some quality criteria.
Mathematically, optimal design of a geodetic nekvionplies minimizing or maximizing an
cost function that denotes the quality of the nekw€lassically, a network can be optimized
using the trial and error method or analytical mdthsuch as linear programming, quadratic
programming, or some optimization problems can bkesl by generalized or iterative
generalized inverses. Optimization problems mayp &als solved by intelligent optimization
techniques such as genetic algorithms, simulate@aimg and particle swarm optimization
algorithm (PSO)In this paper, we dealt with optimization problefmgeodetic networks. A
GPS network was optimized by using PSO algorithnthin sense that it will satisfy good
precision and low cost requirements. Accordinguo results, PSO algorithm can be used as
a tool for optimizing a geodetic network

1. INTRODUCTION

Optimization implies minimizing or maximizing an jebtive function which expresses the

criteria adopted to define the quality of the netwdGenerally, the quality of a geodetic

network have been characterized by its precisielighility and strength, and economy. But,

one more criterion are added to these criteriadfformation monitoring networks, that is

sensitivity criterion. Precision is a measure of thetwork’s characteristic in propagating
random errors. The main purposes of the preseritilbotion is to design and optimize of a

GPS network in the sense of high precision anddossible cost. Grafarend (1974) classifies
different optimization problems into different ordethat is:

a) zero-order design (ZOD): optimum datum definition
b) first-order design (FOD): design of the optimumwatk configuration
c) second-order design (SOD): selection of the optinalservational weights

d) third-order design (THOD): improving an existingtwerk by adding extra points
and/or observations
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Sometimes the FOD and the SOD design problemseaoliged simultaneously. In this case,
the design problem is called a combined (COMD) [aab(Kuang, 1996).

Traditionally, geodetic network optimization profrie can be solved using either trial and
error method or analytical methods. Unfortunatéigse classic approaches can give rise to
some problematic cases. For example, when the dridl error method are used, optimal
network may never be found and a great quantitgoafputation may be required. Similarly,
analytical methods may produce absurd solutionf siscnegative weights or disconnected
networks. Furthermore, the planned network may nbeeachieved (Kuang, 1996). On the
other hand, local optimization techniques such asng's methodology in the geodetic
literature can be converged to any local optimusteiad of global optimum. Can the optimal
design problems of geodetic networks be solvedgusimore simple and efficient method?

The main purposes of the present paper is to eeafizsecond-order design of a GPS network
that can be used for deformation monitoring ingbase of desired precision and low possible
cost using PSO method. That will provide an optimsorvey planning and prevent
unnecessary observations.

2. OPTIMAL DESIGN OF GEODETIC NETWORKS

In the literature of geodetic network optimal desigptimization means minimizing or
maximizing of an objective function that represtrg goodness of the network. The goodness
of a geodetic network can be measured by precigieimbility and strength, and cost.
Different objective functions reflecting these eria can be used in the optimization
procedure. Only precision and cost criteria areswred in this paper. Criterion matrices are
very adequate tools to set up objective functidmeylrepresent a desired precision for the
network results. If a criterion matrix is used Imetoptimization procedure the following
objective function can be employed:

Ic, —=C4| - min. (1)

In all of the optimization problems, the main taiskto find optimization variables by
minimizing or maximizing the chosen objective fuoot Furthermore, the values of
optimization variables can be restricted accordingome specific constraints. Now, we will
discuss these two important concepts of optimimapicocedure the second-order design of
geodetic networks point of view, namely, optimipativariables and constraints.

In the SOD, the P matrix of observation weightshis optimization variables. On the other
hand, the A matrix represents the geometry of #ievork. If both matrices are known, the
covariance matrix for the unknowns in the adjusthpeablem is given by

c, =a(aATPAJ* 2)

As is well known, covariance matrix of the unknovparameters contains complete
information about the precision of a geodetic nekwo
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The weights of observations should be non-negativd be bounded by the maximum
achievable accuracy of the available instrumenites),

0<R <1 3)

where g7 is the a priori variance factor ar(drf) are the minimum variances that can be

achieved for each observation (Kuang, 1996).

min

As mentioned above, classic methods that appearethd literature may cause some
problematic cases. Recently, many optimization i@l have been solved by using
techniques of artificial intelligence. These tecjuds are also named natural optimization
methods. Examples of natural optimization techrsgare simulated annealing (Kirkpatrick et
al., 1983), genetic algorithms (Haupt and Haup@430and PSO (Parsopoulos and Vrahatis,
2002). These techniques emulate optimization pssse®ncountered in the nature. For
example, PSO mimics collective behavior of somaittmes such as birds and bees. In the
next section we will discuss the PSO method.

3. PARTICLE SWARM OPTIMIZATION

PSO, which is an iterative-heuristic, populatiorsdxh search algorithm, is proposed by R.C.
Eberhart and J. Kennedy in 1995. It emulates dblledntelligence of bird flocking, fish
schooling and bee swarming to converge to the ¢lopamum. In the frame of PSO, a
swarm consists of interacting agents that is dadicThe characteristics of the particles
depend on the problem of interest. Collaborationomgnthe particles provides global
optimum to the problem. These particles move inDadimensional search space, in an
attempt to discover ever-better solutions.

Each particle of the swarm has a current positiectar and an adaptable velocity vector.
Position vector contains optimization variablesr Example, in this study optimization
variables are observation weights. Furthermoreh eddhe particles has a memory. During
the iterative procedure, they remember both thé esition found so far by each particle of
the swarm and the best position found so far bytradl particles. At each iteration step,
particles are shifted from their current positigndpplying a velocity vector to them. As it is
clear, the velocity of each particle have been tgatlat each iteration of the algorithm.

The manipulation of the swarm have been implemeatedrding to following two equations:
Voo =Clwy +1,(p —x) +,r,(py =% ) (@)

Xi+l = Xi +Vi+l (5)
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Here, the position of thigth particle is represented as = (X, X;,,....Xp ), and the velocity
for ith particle is represented as =(v,,V,,.,....V,; ), the best previous position of tlith
particle is represented g% = (p,,, P,.--Pio ) p, is the best solution achieved so far by the

whole swarm. In Equation 4, there are some parasigtat must be explained. andr, are
random numbers, uniformly distributed in [0,1]. Vhere used to add a stochastic element to
the movement of the particles. Constacf{sand c, determine the balance between the
influence of each particle’s knowledgg,) and that of the whole swarnic,). These

constants are called cognitive parameter and spar@meter, respectivel is constriction
factor, which is used to limit velocities. The velly of the previous iteration is kept weighted
with w, i.e., the inertia weight. The inertia weight aodnstriction factor prevent the
algorithm to converge on premature solutions.

Finally, the basic strategy for the implementatdnhe PSO algorithm is given as follows:
1. Initialization

j=0

(a) Determine the objective function, optimization ednles and constraints

(b) Select PSO parameters such as inertia weight, raciiest factor and social
and cognitive parameters

(c) Select neighborhood topology

(d) Randomly generate initial particle positiorS in D-dimensional search space

(e) Set initial particle velocities to zere, =0
(f) Setj=1

2. Optimize

(a) Evaluate objective function valug' using particle positions/
(b) If f) <> then "™ =f! andp, = x/

f " is the particle’s personal best cost

(c) If )< f o, thenf2s, =f) andp, =x/

fbeﬂ

qona 1S the best cost of whole swarm

(d) If stopping criterion is satisfied then go to 3
(6) Update all particle velocitieg’ by Eq. (1)

(f) Update all particle positiong’ by Eg. (2)
(9) Increase |

(h) Go to 2(a)

Stop

For more detailed information on PSO, interestealdees refer to Kennedy and Eberhart
(2001), Clerc and Kennedy (2002), Eberhart and 300@) and Parsopoulos and Vrahatis
(2002)
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4. NUMERICAL EXAMPLE

The second-order design of GPS networks using clagseration research methods was
investigated in Kuang (1996). To demonstrate thdiegdplity of PSO to the SOD of a GPS
network an example is provided below. If a set oings whose relative coordinates to be
estimated by GPS relative positioning techniqudisiaof possible baselines that can be
measured in the field and the precision criteriatifie estimated coordinates are given, PSO
searches for the optimal set of observational visigimd their corresponding observational
precisions.

Figure 1 depicts a GPS network consisting of 4 fsoamd 6 baselines. This network can be
used for deformation monitoring. The desired preciscan be described by a criterion
matrix. In our example, we used the following aid@ matrices:

C, :diag{l2 12}(mm2) (6)

1
2

3

Figure 1- GPS Network

Let us perform a SOD following the objective fulctiexpressed in Equation 1. PSO was
used as a solution strategy. Chosen parametePSiOrare listed in Table 1.

The maximum and minimum weights are define the $eapace, i.e., particle position are
restricted with minimum and maximum weights. Maximweights are calculated using the
precision of available instruments. The minimum amaximum weights are shown in the
columns 3 and 4 of Table 2, respectively.

Parameter Value

Particles 30

Iteration 100

¢, andc, 2.05
W decreasing from 1 to O during the iterative preces

C 0.729

Table 1- PSO parameters
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The obtained optimization results using PSO methhedsammarized in Table 2, Table 3 and
Table 4.

From To P(min) P(max) P(opt.)
1 2 0 1 0.7423
1 3 0 0.5 0.4549
1 4 0 1 0.7126
2 3 0 1 0.3948
2 4 0 0.5 0.0000
3 4 0 0.4816

Table 2- Optimization Results

As can be seen from Table 2, the optimal weighttlier baseline of 2-4 baseline is zero.

Accordingly, this baseline are eliminated from fimédserving plan. If the baseline of 2-3 is

eliminated due to its optimal weight is insignifidacompared to other baselines, final results
for the network are obtained as given in Table 3. dptemal weights of the rest baselines are
replaced by maximum weights given in the columm & able 2, because maximum weights
are calculated with respect to the precision oflalike instruments. In Table 3, the variances
of the coordinates have been shown. Since the laboes among all GPS baseline

components are neglected, the standard deviatibtiseocoordinates are the same for any
point. According to these results, our criteriaggivn Equation 6 are satisfied for all points.

Point a'f 0‘5 0'22
2 1 1 1
3 1 1 1
4 0.75 0.75 0.75

Table 3- The variances of the coordinates afternapétion

5. CONCLUSION

An optimal network in the sense of desired precisaad low possible cost can be achieved
with the PSO algorithm. The main goal of the présemtribution was to solve SOD problem

in a GPS network in order to find optimum obseiwasi accuracy. Having applied the PSO
algorithm to the problem, the observations thatbigined with zero weight are removed from

the observing plan.
It should be noted that the application of the P&@brithm to the geodetic optimization
problems are very preliminary. For example, différeptimization problems such as the FOD

of a geodetic network can be solved using thisriegle, or sensitivity criterion can be dealt
with for deformation monitoring networks. On thehet hand, some studies about the
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characteristics of the PSO algorithm may be inges#id, to illustrate the proper selection of
PSO parameters can be searched. Furthermore, giec#®SO is a stochastic method,
initializing the algorithm and producing randomraknts of the algorithm can be examined in
detail.
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